BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Sunday, 21 October 2012

Combinational Circuit

Combinational Circuits :
1.        No memory – output depends on present input only (contrast to sequential logic).
2.        The output is a pure function of the present input only.
3.        Can be defined in three ways :
          i.              Truth table
        ii.              Graphical symbols
      iii.              Boolean equations

Truth table :
A
B
C
F(SOP)
F(POS)
0
0
0
0
0
0
0
1
0
1
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1



Graphical symbols :  


Boolean equation :
Equation that consist of possible combination of inputs that produce an output signal.


Boolean Equation Forms :
1.        Represented in 2 forms
          i.              Sum-of-products (SOP)
1 = A  , 0 = A’
        ii.              Products-of-sum (POR)
1 = A’  ,0 = A

Example of SOP :
F = A’BC + A’B’C + ABC
 

For SOP, output 1 will be taken.
SOP expression :
F = A’BC + A’B’C + ABC
NOTE : This is not simplified version

Example of POR :
F = (A + A’)(AB + ABC)
A
B
C
A’
AB
ABC
F
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
1
0
1
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
1
0
1
1
1
1
0
1
1
1

For POS, output 0 will be taken.
POS expression :
F = (A + B + C)(A + B + C’)(A + B’ +C)(A +B’ +C’)(A’ + B + C)(A’ + B + C’)


Simplification Of Boolean Equation :
F = A’BC + A’BC’ + AC
F = A’(BC + BC’) + AC-------------Distributive Law
F = A’( B(C + C’) ) + AC-----------Distributive Law
F = A’( B(1) ) + AC-----------------Inverse Law
F = A’B + AC------------------------Identity Law


Law of Boolean Algerba :



Karnaugh Map :
Example :
a)        Truth Table :
F = A’BC + AB’C’ + AB’C + ABC’ + ABC
A
B
C
F
Minterm
0
0
0
0
A’B’C’
0
0
1
1
A’B’C
0
1
0
1
A’BC’
0
1
1
1
A’BC
1
0
0
1
AB’C’
1
0
1
1
AB’C
1
1
0
1
ABC’
1
1
1
1
ABC



So, the question become F = A + BC

a)        Boolean Law :
F = A’BC + AB’C’ + AB’C + ABC’ + ABC
F = A’BC + A ( BC + B’C + BC’ + B’C’ )-------------Distributive Law
F =A’BC + A ( B(C + C’) + B’ (C’ + C) )--------------Distributive Law
F = A’BC + A ( B(1) + B’ (1) )-------------------------Inverse Law
F = A’BC + A ( B + B’ )--------------------------------Identity Law
F = A’BC + A (1)---------------------------------------Inverse Law
F = A’BC + A-------------------------------------------Identity Law
F = A + BC---------------------------------------------Absorption Law

 By CHONG LEE MAN - B031210367


0 comments: